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Abstract

Current models of the general circulation of the global oceans employ a spatial discretization of the relevant hydrody-
namic fields on Cartesian rectilinear grids. For many applications, significant benefit would be expected to accrue from the
versatility offered by unstructured grids. However, until very recently, available numerical methods for performing integra-
tions on unstructured grids could not conserve discrete dynamical invariants, a numerical model characteristic that is
important for robust ocean simulations over large space and time scales (as needed, for instance, in climate modeling appli-
cations). Our purpose in this paper is to describe such a conservative discretization scheme for rotating hydrostatic Bous-
sinesq fluid dynamics on general triangular tessellations of the sphere, and to demonstrate its properties in a number of
simulations that incorporate realistic ocean basin geometry. Several different implicit time discretizations are possible, each
of which exhibits a form of exact numerical energy conservation in the absence of dissipation. The properties of this new
numerical methodology are validated through analysis of a sequence of unforced nonlinear dynamical problems, which
clearly demonstrate the capacity of the model to resolve the geostrophic adjustment process and the onset of baroclinic
instability in collapsing density fronts. As a final test, a number of ocean modeling experiments with realistic climatological
and wind-stress forcing are performed in order to investigate the manner in which different mesh structures and resolutions
influence the simulated phenomenology. As the theoretical properties of the numerical methodology suggest, it is thereby
shown to be both robust and stable. The further work that will be required to implement this structure in a state-of-the-art
oceanic general circulation model, as well as other potential applications of the techniques, are discussed in the concluding
section of the paper.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A variety of numerical models of the global ocean circulation and tides have previously been described, but
the implementations of these models have historically drawn upon a very limited range of computational tech-
niques. Ever since the early work of Bryan [1] and Bryan and Cox [2], Cartesian curvilinear grids have been
used to discretize the dynamical state of the oceans, as determined by the global spatial distributions of veloc-
ity and other quantities (see, e.g., the historical review by Semtner [3] and the text by Griffies [4]). The simplest
examples of such structured grids derive from regular latitude-longitude coordinates, and therefore exhibit sin-
gularities at the north and south poles (which presents a problem as the former lies in the ocean domain). Im-
proved spatial discretizations have been achieved by remapping and reconnecting the basic Cartesian grid
topology, which has allowed global ocean modelers not only to circumvent pole problems, but also to perform
simulations in which rows and columns of grid points are more finely spaced in specific regions of interest than
in the overall domain (e.g., Murray [5]). However, this capability is still very primitive in comparison with so-
called unstructured meshing techniques, which have long been used in engineering to facilitate fluid dynamical
simulations with complex domain geometries and spatially varying grid resolution.

The advantages of unstructured grid techniques in ocean modeling have already been illustrated in a variety
of coastal and regional-scale analyses (see, e.g., Myers and Weaver [6], Lynch et al. [7], Casulli and Walters [8],
Chen et al. [9], Nechaev et al. [10], and Zhang et al. [11]). Being defined upon very general spatial discretiza-
tions, such techniques make it possible for oceanic models to be closely matched to bathymetry. They allow,
for instance, for increased resolution in regions with strong topographic slopes or western boundary currents.
Moreover, the edges of cells in an unstructured grid may be more-or-less arbitrarily oriented in space (apart
from some modest conditions on topology and element quality), and meshes can therefore be constructed in
which regions delimited by specified isobaths are well-represented by sets of undivided cells of the discrete
mesh. In particular, the geometry of land–sea boundaries can be represented with greater fidelity by an
unstructured grid than by a Cartesian grid of comparable resolution, in which the corners of discretized coast-
lines must always have approximately 90� angles.

We are interested in the problem of global ocean general circulation modeling, which presents a set of chal-
lenges somewhat different from those associated with local modeling. One clearly does not need to specify heu-
ristic lateral boundary conditions where simulated and unsimulated portions of the ocean interact, but must
instead derive the model in spherical geometry, making use of a topographic data set (such as ETOPO2 [12])
that covers the entire surface of the Earth. In principle, naı̈ve adaptations of numerical techniques developed
for local unstructured grid ocean models could be applied in spherical geometry, but there are problems with
such an approach. Whereas local ocean models are typically designed for short simulations (on the order of
days to months), ocean general circulation models (OGCMs) are very often used to study dynamics on time
scales ranging from years to centuries or even millenia (e.g., see Peltier and Solheim [13]). The computational
methods used in the implementation of OCGMs must therefore adequately represent the budgets of important
dynamical quantities while ensuring numerical stability for simulations of indefinite duration. Existing
OGCMs have fulfilled these conditions to an acceptable degree by exploiting mesh staggering techniques
whose application to structured Cartesian grids has long been well-understood. A particularly well-known
example of such a Cartesian staggered mesh scheme is that of Harlow and Welch [14], which conserves, among
other quantities, the local and global kinetic energy and vorticity (see Lilly [15]). However, the extensions of
conservative staggered mesh discretizations to unstructured grids have not been described until recently (see
Perot [16], Zhang et al. [17] and references therein).

We describe the implementation of a new unstructured grid OGCM based upon a numerical methodology
that has analytically verifiable stability and conservation properties. The computational techniques can be ap-
plied to a range of geophysical fluid dynamical models, but for initial illustrative purposes we will represent the
oceans as a hydrostatic, rigid-lid Boussinesq fluid on the rotating sphere. The methodology fits within a broad-
er class of covolume and unstructured orthogonal mesh techniques that were proposed for the incompressible
Navier–Stokes problem by Nicolaides [18], and that have subsequently been generalized for application to
local baroclinic coastal models by Casulli and Walters [8] and Zhang et al. [11]. The finite-volume/finite-
difference methods of these authors exploit special geometric characteristics of unstructured grids and use a
semi-implicit time-stepping scheme that simultaneously determines velocity and pressure. This is inherently
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more accurate than the ‘‘mode splitting’’ done by most OGCMs, which tend to use predictor-corrector schemes
that decouple barotropic and baroclinic modes in a somewhat ad hoc fashion (e.g., Griffies [4], Chapter 12).
However, the coastal models described by Casulli and Walters [8] and Zhang et al. [11] invoke explicit discret-
izations for advective nonlinear terms, which simplifies the algebraic equations that need to be solved (making
them symmetric positive definite, or SPD), but precludes the exact conservation of quadratic invariants such as
kinetic energy. Such conservation, which cannot be achieved in any case in models using predictor–corrector
strategies (see Bryan and Cox [19]), represents an advantage even over existing Cartesian grid OGCMs.

The numerical methodology described herein enforces the discrete conservation of quadratic invariants on
spherical unstructured grids using a generalization of an unstructured mesh staggering technique that Perot
[16] has shown to be energy-conserving on flat planar domains. Under appropriately unforced and non-
dissipative conditions, energy conservation can be maintained to arbitrary precision when the spatial discret-
ization is combined with a specific type of implicit temporal discretization (whose detailed implementation has
apparently not been discussed before). We derive appropriate discretized dynamical equations and evolve
them with the aid of a Krylov subspace iteration technique (GMRES [20]), which solves the non-symmetric
linear equation systems relating dynamical fields at successive time levels. This is more costly than the use
of direct methods without solvers, or methods that use preconditioned conjugate gradient iteration to solve
SPD systems, but it brings the benefit that robustness is ensured through the local and global conservation
of quadratic quantities that are invariants of the continuous system (to within bounds dependent upon the
tolerance used in the algebraic solution).

Conservation of invariants essentially ensures that a limited subset of the discrete degrees of freedom will be
accurately resolved. In the broader sense, accuracy is characterized by the order of convergence of solutions
with increasing spatial or temporal resolution. Basic analytical considerations, along with results reported by
Casulli and Walters [8] and others, suggest that orthogonal unstructured grid techniques are first order in
space for arbitrary meshes, but approach second order accuracy when grid cells are regular in shape. The or-
der of convergence of our scheme hence depends upon the details of the techniques used to generate the spher-
ical unstructured grids, a topic that we will touch upon briefly, without going into great detail. Order of
accuracy has generally not been of primary concern in OGCMs, and there do not appear to be any global
reference solutions against which convergence can be assessed. Efforts to evaluate model performance along
these lines were made during the development of atmospheric GCMs (see Williamson et al. [21]), but published
discussions of OGCM results tend to focus on phenomenology, and rely upon elaborate initialization and
forcing schemes and mixing parameterizations to generate realistic flows. Without addressing in detail the sec-
ondary issues that complicate global ocean modeling, we will discuss the results of a number of OGCM-type
simulations with climatological buoyancy and wind-stress forcing, assessing how varying mesh structure and
resolution affects the resolved phenomenology. Where auxiliary hypotheses are required to close the dynamics,
we will consistently invoke common, though not necessarily state-of-the-art, approximations. These test re-
sults will demonstrate in a rudimentary way that the numerical methods are accurate, robust and efficient en-
ough to sustain ‘‘realistic’’ OGCM dynamics over useful grid resolutions and time intervals.

The energy budgets of OGCM simulations are generally too complex to permit straightforward quantitative
analysis, and in order to evaluate the crucial features of our discretization we also discuss a number of contrived
initial value simulations that have simple energy budgets while still exhibiting the important processes of geo-
strophic adjustment and baroclinic instability. The various test results will be presented in Section 3 below, after
we have described the details of the spatial discretization procedure and computational methodology in Section
2. Concluding remarks and a discussion of our plans for future work are provided in Section 4.

2. Model and numerical discretization

2.1. Dynamical equations

The first matter that must be addressed concerns the form in which the equations are written that are to be
discretized on the surface of the sphere. As noted, the present work makes use of the 3D hydrostatic and Bous-
sinesq model, although similar issues arise for alternative approximations of the fluid physics. The transport
equations for heat and salinity scalars have a straightforward form: i.e.,
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oT
ot
þ ½v � r �Dðlh; lvÞ�T ¼ F T;

oS
ot
þ ½v � r �Dðlh; lvÞ�S ¼ F S.

ð1Þ
Temperature, T, and salinity, S, evolve according to a pair of forced advection–diffusion systems, with FT and
FS being the respective forcing terms, while v is the 3-D advecting velocity field in the spherical shell and
Dðj; rÞ is used to denote a linear diffusion operator. j = lh is the dissipation coefficient in the horizontal
(i.e., tangential) direction, and r = lv is the corresponding coefficient in the radial direction r̂, with both coef-
ficients varying in space and time in general.

Conceptually, momentum (and hence velocity) in the Boussinesq system could be regarded similarly as
evolving by advection–diffusion dynamics, except for a number of complicating issues. Firstly, the velocity
field, v, must satisfy the conservation of volume constraint, $ Æ v = 0, which, as is typical in incompressible
hydrodynamics, determines the pressure field, p. In hydrostatic Boussinesq dynamics, only the horizontal
velocity evolves prognostically, while conservation of volume determines the surface pressure (for the case
of a rigid lid), as well as the vertical velocity, w � v � r̂. The vertical variation of pressure is determined by
the hydrostatic relation: i.e.,
4p2

X2
0r0q0

½̂r � rp þ gqðT ; S; p�ðzÞÞ� ¼
op̂
oz
þ q̂ðT ; S; zÞ ¼ 0; ð2Þ
while the volume conservation condition and advection operator are given by
r � v ¼ r � uþ ow
oz
¼ 0;

v � r ¼ u � r þ w
o

oz
;

ð3Þ
in which u � v� wr̂ is the horizontal velocity. We have introduced a non-dimensionalization whose length
unit is the radius of the Earth at sea level, r0, and the offset vertical coordinate, z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� 1, mea-

sures the radial displacement of a point with respect to this radius. Unit time is prescribed to be 1 day (2p/X0,
with X0 the angular velocity of the planet), while the pressure and density are non-dimensionalized as shown in
Eq. (2), in which q0 is the Boussinesq reference density, g is the acceleration due to gravity, and the function
p*(z) is an a priori estimate of the variation of pressure with depth. Such a function is conventionally used in
order to linearize the determination of the pressure profile from the equation of state. Hereafter, all quantities
should be assumed to be non-dimensional, with hats dropped.

An additional factor that complicates the treatment of horizontal momentum evolution in terms of advec-
tion and diffusion relates to the fact that this quantity is a 2-D vector on the curved spherical surface. Carte-
sian grid modelers typically derive discrete conservation laws for u1 and u2 in flux form from the 2-D tensor
form of the momentum equation, using a basis aligned with the gradients of orthogonal coordinate functions,
$n1 and $n2, which are conveniently approximated by the edges of grid cells (for example, $k and $/ point
north and east if k and / are latitude and longitude, respectively). This approach is not viable for spherical
unstructured grids, which are, by their very nature, not associated with any curvilinear coordinate system.
However, an alternative mathematical treatment of the horizontal momentum dynamics entails representing
them as a fully three-dimensional flow with a constraining force acting upon the horizontal velocity vector,
u ¼ uxx̂þ uy ŷþ uzẑ, in such a way as to enforce the condition u � r̂ ¼ 0. When the effects of the Coriolis force
are also included, the evolution equation for the three components of u takes the form
ou

ot
þ ½v � r �Dðmh; mvÞ þ 4pẑ��uþrp ¼ Fu þ Kr̂; ð4Þ
where Fu, mh, and mv are the forcing function, horizontal viscosity, and vertical viscosity, respectively.
For the pure horizontal case where v ” u, Du � 0, K = �u Æ u, and p is governed by shallow-water height

field dynamics, Côté [22] has shown that Eq. (4) is equivalent to the tensor form of the momentum equation.
For the Boussinesq case, the more complex relation between u and v and the corresponding advection operator
are given by Eq. (3) but, since or̂=oz ¼ 0, the constraint force is unaffected. The form of the spherical momen-
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tum diffusion operator raises more subtle issues, and we will not devote a great deal of attention to this prob-
lem, which has been handled at various levels of approximation by Cartesian grid ocean models (see Griffies
[4], Chapter 19). In any case, our discretization, which projects u onto the horizontal faces of grid cells in a
natural way, will be seen to eliminate the ‘‘extra’’ degrees of freedom in Eq. (4) and the need to explicitly com-
pute the Lagrange multiplier K. We will, however, relate this term to the discretization error associated with
spherical curvature (see Section 2.3 below).

2.2. Oceanic grids

In principle, the numerical discretization that is being described can be applied to any spherical triangular
tessellation of the ocean domain. The generation of such meshes, given bathymetry data as input, is a subject
in itself, and we will not discuss it in any detail here. We have experimented with a number of approaches de-
rived from one or the other of two well-known surface mesh generation techniques: the advancing frontmethod
(e.g., Lau and Lo [23]), or the quadtree method (e.g., Greaves and Borthwick [24]). Described succinctly, the
advancing front method entails first computing the coastal contours and discretizing them with edges of desired
length. The ocean area is then filled in with triangles by an iterative procedure, each step of which involves the
‘‘extrusion’’ of a triangle into the ocean from one of the coastal edges. This modifies the discrete coastline (or
‘‘front’’) while reducing the size of the untriangulated portion of the ocean domain, which vanishes entirely at
the final step of the algorithm. Quadtree methods, in contrast, begin with the construction of a complete,
coarse-grain tessellation of the spherical surface into triangles (we use the Platonic spherical icosahedron be-
cause it has been found to have favorable geometric properties; see, e.g., Baumgardner and Frederickson
[25], Stuhne and Peltier [26,27]). A different kind of iterative procedure is then carried out, each step of which
entails subdividing one triangle of the mesh into 4 in order to increase the local resolution (hence ‘‘quadtree’’).
Except in the special case in which the entiremesh has been uniformly subdivided, this results in a non-conformal
triangulation that must be corrected by means of a topological balancing procedure. The portion of the
triangulation that is not in the ocean is then deleted in the final step of the algorithm.

Fig. 1 compares ocean tessellations that were generated by the two respective methods (the top two frames
by advancing front, and the bottom two by quadtree). All cases utilized the ETOPO2 [12] bathymetry data-
base and the left frames show the results when a uniform ‘‘target’’ node spacing of about 2� is prescribed. For
the quadtree method, this simply corresponds to a fivefold dyadic refinement of the basic spherical icosahe-
dron, which is illustrated in the lower left frame. The mesh in the upper left frame, which was generated by
the advancing front method, has comparable node spacing and very similar total node and triangle counts.
However, its qualitative structure is markedly different. The advancing front mesh obviously provides a more
faithful representation of the coastline, while the quadtree mesh provides a more regular distribution of trian-
gle shapes and node connectivities. The same continues to hold true when the node spacing is prescribed to be
variable over the surface of the sphere, as is the case in the example shown in the two right frames of Fig. 1.
For this case, close-ups of the discretization of a portion of the Arctic ocean are depicted.

Clearly, the coastal fidelity offered by the advancing front technique is a desirable feature, while the coastlines
of the quadtree meshes continue to exhibit a version of the jagged coastline problem that afflicts regular Carte-
sianmeshes. Unfortunately, the more erratic mesh geometry in the ocean interior often results in poor numerical
accuracy, and to date we have obtained robust results using only the quadtree method. There is, however, a
wealth of strategies formesh generation and improvement, andwe are, in ongoing work, developing amore opti-
mal combination of techniques. The results to be described inwhat followswere obtained using quadtreemeshes.

2.3. Horizontal discretization

We consider first the uppermost radial level of the discretization, which is a triangular discretization of the
spherical shell that represents the entire ocean domain, while excluding those portions of the globe that are
above sea level. The material in the first part of this subsection overlaps to some degree with Perot�s [16] dis-
cretization of the divergence form of the Navier–Stokes equations on the plane. However, we require a more
general version of these results that applies to spherical shells, and that can be adapted to the 3-D rotating
Boussinesq equation system (see Sections 2.4 and 2.5 below).



Fig. 1. Illustrations of computational grids generated by advancing front (top) and quadtree (bottom) methods. The left example shows a
uniform grid on the full globe, while the right example focuses on a non-uniformly gridded region of the Arctic ocean.
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The discretization is based upon cell-edge communication, with quantities being indexed over a set of Nt

triangular cells and a set of Ne edges, each of which is adjacent to one or two triangles (two, in the case of
an interior edge; and one, in the case of a boundary edge). The topological coincidences of triangle vertices
and edge endpoints determine, additionally, a set of Np nodes at positions x1, x2, . . .,xNp . Supposing that U
and k denote ‘‘field’’ quantities tied, respectively, to triangles and edges, the subscripted symbols Uc ¼
Uðc1;c2;c3Þ and ke ¼ kðe1;e2Þ are used to denote their particular values at given triangles and edges. The integers
c1, c2, and c3 in the three-component index, c, of a triangle are the node indices of its vertices, while the integers
e1 and e2 in the two-component index of an edge, e, are the node indices of its endpoints. If ci and cj are two
different corners of triangle c, then there is a unique edge, e – either (ci,cj) or (cj,ci) – linking them in the direc-
tion prescribed by the order of indices in e. The orientations of edges are arbitrary in relation to the geometry,
while the components of triangle indices, c, are in such order that the triangle has positive orientation with
respect to the local surface normal: i.e.,
xc1 � ½ðxc2 � xc1Þ � ðxc3 � xc1Þ� > 0. ð5Þ

The geometry and indexing scheme of the discretization is illustrated in Fig. 2, which shows four neighboring
spherical triangles and adjacent edges, along with some geometric quantities tied to these objects. �x and n̂ de-
note the midpoints and normals of edges, as determined by



Fig. 2. A representation of four neighboring surface triangles that illustrates the indexing scheme, as well as some relevant geometric
quantities (nodes, edge midpoints and normals, and face circumcenters).
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�xe ¼
xe1 þ xe2

jxe1 þ xe2 j
; n̂e ¼

xe1 � xe2

jxe1 � xe2 j
; ð6Þ
while X denotes triangle circumcenters, as determined by the equation system
½cXc � �xðc1;c2Þ� � ðxc2 � xc1Þ ¼ 0;

½cXc � �xðc1;c3Þ� � ðxc3 � xc1Þ ¼ 0;

ðcXc � xc1Þ � ½ðxc2 � xc1Þ � ðxc3 � xc1Þ� ¼ 0;

ð7Þ
where c is determined so as to project Xc onto the sphere (i.e., to ensure Xc Æ Xc = 1). The geodesic lengths of
edges and the areas of spherical triangles, denoted, respectively, by ‘ and A, are also important geometric
quantities, and are determined by the formulas:
‘e ¼ acosðxe1 � xe2Þ;

Ac ¼ acos
ðxc1 � xc2Þ � ðxc3 � xc2Þ
jxc1 � xc2 jjxc3 � xc2 j

� �
þ acos

ðxc2 � xc3Þ � ðxc1 � xc3Þ
jxc2 � xc3 jjxc1 � xc3 j

� �
þ acos

ðxc2 � xc1Þ � ðxc3 � xc1Þ
jxc2 � xc1 jjxc3 � xc1 j

� �
� p.

ð8Þ

We now consider the notation for linear matrix operations relating quantities defined over cells and edges,
and, in particular, the respective symbols D and DT are introduced to define a cell-to-edge difference operator
and its transpose: i.e.,
ðDUÞe ¼
X
c

de;cUc; ðDTkÞc ¼
X
e

de;cke. ð9Þ
The sums in Eq. (9) range over all index permutations corresponding to cells or edges of the mesh and the
definition of the matrix coefficients,
de;c � de1c1de2c2 þ de1c2de2c3 þ de1c3de2c1 � de1c1de2c3 � de1c2de2c1 � de1c3de2c2 ; ð10Þ

is such that, if (c1,c2,c3) and (c4,c2,c1) refer to two adjacent triangles with common edge (c1,c2), then the dif-
ference of a field across this edge is
ðDUÞðc1;c2Þ ¼ Uðc1;c2;c3Þ � Uðc4;c2;c1Þ
(with the minuend being the value on the triangle whose indices are in cyclical order with respect to the edge).
Now, if G is a scalar field that is evaluated at triangle circumcenters and F is a vector field whose normal

component, F ? ¼ n̂ � F, is evaluated at edge midpoints, then we can approximate the internal edge-values of
the normal gradient of G and the cell-values of the horizontal divergence of F by the respective expressions:
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n̂ � rG � DG
jDXj ¼ jDXj

�1
e

X
c

de;cGc;

rh � F � �
1

A
DT½‘F ?� ¼ �A�1c

X
e

de;c‘eF ?e ;
ð11Þ
in which jDXje can be identified with the arc length between the circumcenters of the triangles adjacent to e.
Boundary edges must usually be handled in special ways for the gradient approximation in Eq. (11), but the
appropriate treatment of common boundary conditions is straightforward, and in our notation we will simply
absorb any inhomogeneous terms that arise into the forcing terms of Eqs. (1) and (4). In Eq. (11) and in what
follows, we also take a few other liberties in order to achieve a more compact notation – for instance, unin-
dexed sums, products, quotients, etc., of fields will be taken to imply (U1OpU2)c = U1cOpU2c when the context
makes the meaning clear.

The discussion thus far applies fairly generically to the family of orthogonal unstructured grid techniques
(e.g., Casulli and Walters [8]), and we recall, for example, that such techniques are first order accurate in the
sense that the face midpoints, �x (where n̂ � rG is evaluated), do not necessarily coincide with the midpoints
between triangle circumcenters, X (where G is evaluated), except over uniform triangular grids. Other unstruc-
tured finite volume methods, such as those used in the coastal model of Chen et al. [9], invoke approximations
that may be nominally more accurate than Eq. (11), but the matrix representations of gradients and diver-
gences under these schemes cannot be related by a simple transpose. This property is of fundamental impor-
tance to our energy-conserving staggered grid scheme, in which gradient and divergence are the fundamental
operations. At the end of this subsection we suggest a simple grid adjustment that may enhance accuracy with-
out compromising the algebraic properties of the scheme.

The grid is staggered in the sense that there is a transformation back and forth between a representation of
a vector field F at triangle circumcenters and the alternative representation of its normal components, F^, at
edges. Because of the differing numbers of degrees of freedom involved, this is not a formally invertible rela-
tion, but one can nevertheless define approximations based upon the identities
F i ¼ ðF � rÞxi ¼ r � ðxiFÞ � xir � F;

F ? ¼ F � ox
on
¼ ox � F

on
� x � oF

on
;

ð12Þ
which discretize to
F � ~CF ? � XDTð‘F ?Þ � DTð‘�xF ?Þ
A

;

F ? � ~C
�1 � F � DðX � FÞ � �x � DF

jDXj .

ð13Þ
With sums written out explicitly, Eqs. (13) become,
Fc � ð~CF ?Þc �
1

Ac

X
e

de;cðXc � �xeÞ‘eF ?e ;

F ?e � ð~C
�1 � FÞe �

1

jDXje

X
c

de;cðXc � �xeÞ � Fc;

ð14Þ
which implies
X
e

‘ejDXjeF ?e ð~C
�1 �GÞe ¼

X
e

X
c

de;cðXc � �xeÞ �Gc

" #
‘eF ?e ¼

X
c

X
e

de;cðXc � �xeÞ‘eF ?e

" #
�Gc

¼
X
c

AcGc � ð~CF ?Þc; ð15Þ
(with G being another arbitrary vector field over cells) and setting G = F gives the following result for the area
integrals of vector norms: i.e.,
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X
c

AcFc � Fc �
X
e

‘ejDXjeðF ?e Þ
2. ð16Þ
Some of the above reasoning steps can be found in the previous analyses of Perot [16], who used a more geo-
metric approach in the flat Cartesian plane. Assuming unit thickness in the ẑ direction, comparisons can be
made through the following interchanges of notation: ‘e M Af for edge lengths; jDXje M Wf for circumcenter
to circumcenter distances; �xe � Xc $ W C

f n̂f for edge midpoint to circumcenter displacements; and Ac M Vc for
cell areas. However, the above approach also sheds further light on the basic analysis, in addition to gener-
alizing it to non-flat surfaces. For instance, Perot explicitly discusses and proves the scheme for approximating
cell vectors in terms of their edge-normal components (as per our ~C operator), but, when projecting the advec-
tive and diffusive flux divergences of vector fields from cells to edges (as per our ~C

�1
operator), he simply intro-

duces weights of W C
f =W f in an apparently arbitrary way. Our analysis provides a rational basis for this step,

which is counterintuitive in the sense that it assigns higher weight to the circumcenter that is farther from the
edge, whereas a naı̈ve linear interpolation would assign higher weight to the nearer circumcenter. Also, the
basis for the kinetic energy conservation property of the staggered grid discretization will be seen to be a nat-
ural consequence of Eq. (15), which can be expressed succinctly as a relation,
~C
�1 � F ¼

~C
T � ðAFÞ
‘jDXj ; ð17Þ
between ~C
�1

and the matrix transpose of ~C.
Because the deviations of a short spherical arc of length h from planarity are Oðh2Þ, there is no degradation

of the OðhÞ accuracy of the gradient and divergence operations of Eq. (11). However, the final discrete momen-
tum equation will depend upon additive and multiplicative combinations of such operations, so it is not imme-
diately obvious how it will be affected by sphericity. The Lagrangian constraint term, Kr̂, in Eq. (4) provides a
means of quantifying this effect. When the horizontal momentum dynamics are self-consistently discretiz-
atized, the contribution of the constraint term should vanish, suggesting that the error be quantified in terms
of its horizontal projection: i.e., as Oð~C�1 � KXÞ. Considering an edge, e, between two triangles, ca and cb, the
geometric relationship between midpoints and circumcenters allows us to write,
�xe �
1

2
ðXca þ XcbÞ þ

ae
2
ðXcb � XcaÞ ð18Þ
and if we use this in tandem with the identity that Xc Æ Xc = 1 for all cells on the sphere, then Eq. (13) gives
~C
�1 � KX

� �
e
¼ Kcb � Kca � �xe � KcbXcb � KcaXcað Þ

jDXje
� ð1� Xca � XcbÞ

2jDXje
Kcb � Kca � aeðKca þ KcbÞ½ �. ð19Þ
The significance of the edge midpoint displacement factor, ae, is that it uniformly vanishes for a regular
triangular grid in which the edge midpoints coincide with the midpoints between circumcenters. Such an ideal
configuration can be realized geometrically in the Cartesian plane, but not on the sphere, except with a handful
of Platonic polyhedra. In general, for a non-ideal grid, ae is Oð1Þ, and the error of Eq. (19) is easily shown to be
OðjDXjÞ with the aid of the arc-length formula: i.e.,
Xca � Xcb � cos jDXje � 1� 1

2
jDXj2e .
Eq. (18) suggests a simple geometric adjustment that can be applied to modestly irregular grids on the sphere
or plane, and that would appear to improve the numerical properties of the scheme at no cost. The modifica-
tion, as it applies to one edge in a flattened geometry, is illustrated in the construction of Fig. 3, and involves
the attribution of lateral curvature to the bounding edges between triangular cells. Specifically, the straight
edge e becomes a circular arc whose concave or convex curvature is sufficient to make the midpoint of the
arc coincide with the midpoint between the circumcenters of the triangles, ca and cb, that it bounds. Algebra-
ically, the transformation is fully determined by the translation of the midpoint: �xe ! 1

2
ðXca þ XcaÞ. The

modified discretization retains the same algebraic machinery as the original, except that the length and area
fields, ‘ and A, that are used in the divergence approximation and elsewhere are modified as suggested by



Fig. 3. Adjustment of the shape of edge e that is required to make its midpoint coincide with the midpoint between triangle circumcenters
Xca and Xcb .
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Fig. 3. Specifically, ‘ becomes the arc length, while the areas of triangles ca and cb are respectively increased
and diminished by the area of the shaded circular segment. For the modified discretization, Eq. (19) suggests
that the curvature error is OðjDKjjDXjÞ, or OðjrKjjDXj2Þ.

2.4. Vertical discretization and the flux divergence operator

The vertical structure of the ocean will be represented in terms of a number of levels with thickness �zi�1 � �zi
centered at depth Zi ¼ ð�zi�1 þ �ziÞ=2, where �z0 ¼ 0 is the z coordinate of the surface (i.e., whereffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

¼ 1), and �zDc
is the corresponding coordinate at the bottom, which is specified as being Dc levels

deep for cell c. The level interface positions �zi are constant over the entire globe, meaning that the discrete
bathymetry is described by the integral triangle-domain field D, which takes the value Dc if the averaged ocean
bathymetry over triangle c falls in the interval ðZDc

; ZDcþ1�.
We will extend our horizontal indexing scheme for cells and edges in such a way that the values of fields U

and k are indexed, respectively, as Uc,m and ke,m, with m = 1, 2, etc., referring to loci at increasing depth in
relation to the objects indexed by c and e in the surface triangulation. Because the topology changes with
depth, this requires generalized versions of the horizontal difference operator, D, and its transpose, DT, which
are given by
ðDUÞe;m ¼
X
c

de;chm;Dc
Uc;m; ðDTkÞc;m ¼

X
e

de;chm;Dc
ke;m; ð20Þ
where hm,n is 1 if m 6 n and 0 otherwise. This additional factor serves to cancel triangles that exist in the max-
imal ocean domain without being wetted at level m > 1. The results of the previous subsection then apply on
each radial level. Because the total non-dimensional ocean depth, �z0 � �zDc

, nowhere exceeds about 0.001, we
can, for this application, neglect the variations of ‘, A, DX, etc., with depth (although this effect is easily added
for applications where it is significant).
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Although the one-dimensional topology in the vertical direction is very simple, we still define both
‘‘untransposed’’ and ‘‘transposed’’ versions of the vertical difference operator, with DT

z applying to differences
between quantities defined at adjacent �z levels, while Dz applies to differences between quantities defined at
adjacent Z levels – for example,
ðDzZÞm ¼ Zm � Zmþ1; ðDT
z �zÞm ¼ �zm�1 � �zm. ð21Þ
These definitions shed some additional light on the much more complex discretization of the preceding sub-
section, and, indeed, the basic approach has been applied directly to three-dimensional meshes for which cell
circumcenters and face centroids can be defined (see Zhang et al. [17]). However, for purposes of hydrostatic
and other stratified flow applications, the horizontal and vertical dimensions must be decoupled. As in the hor-
izontal discretization, we do not discuss in detail the straightforward implementations of common vertical
boundary conditions, and roll-up all inhomogeneous terms into the dynamical forcing.

We now suppose that we are given a non-divergent velocity field as per Eq. (3), with v ¼ uþ wr̂, for which
u ¼ u � n̂ is prescribed at Z-edges and w is prescribed at �z-cells. This configuration, as well as the overall geom-
etry of the vertical discretization, is depicted in Fig. 4 for a triangular cell, c, and its three adjacent edges, e, f,
and g. The continuity equation, $ Æ v, and the flux-divergence operator, L, as defined by
Lðv; j; rÞU ¼ v � rU�Dðj; rÞU ¼ r � vU� jrhU� r̂r
oU
oz

� �
; ð22Þ
are discretized at Z-cells (i.e., at prism circumcenters) by
Fig. 4. Radial discretization of a column beneath a cell, c, and its adjacent edges, e, f, and g.
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Lðu; j; rÞU � � 1

A
DT ‘uhUi � ‘j

DU
jDXj

� �
� DT

z

DT
z �z

whUiz � r
DzU
DzZ

� �
;

Lðu; 0; 0Þ1 ¼ � 1

A
DTð‘uÞ � DT

z w

DT
z �z
¼ 0;

ð23Þ
in which U is a scalar and the averaging operations are prescribed by
hUie;m �
1

2
ðUca;m þ Ucb;mÞ; ðhUizÞc;m �

1

2
ðUc;m þ Uc;mþ1Þ ð24Þ
for the respective geometric configurations depicted in Figs. 3 and 4. L in Eq. (23) is shown depending only
upon the horizontal velocity components because w may be diagnosed explicitly from u as
wc;m ¼ �
Xm
i¼1

DT
z �z
A

DTð‘uÞ
� �

c;m

ð25Þ
by means of the discrete continuity equation and the boundary conditions
wc;0 ¼ wc;Dc
¼ 0. ð26Þ
In considering the conservation properties of the discretization, we identify Lh with the horizontal term of L
on a particular level and form the sum
X

c

AcHcðLhUÞc ¼ �
X
c

Hc

X
e

de;c ‘euehUie �
‘eje

jDXje
ðDUÞe

� �

¼
X
e

ðDHÞe ‘euehUie �
‘eje

jDXje
ðDUÞe

� �
; ð27Þ
using H to denote another arbitrary field. For H = 1, it is easily seen that (DH)e = 0 on interior edges and ±1
on boundary edges so as to make Eq. (27) a simple sum of outward fluxes through boundary edges. For
H = U, we use the difference of squares,
ðDUÞehUie ¼
ðUcb � UcaÞðUca þ UcbÞ

2
¼

U2
cb
� U2

ca

2
¼ 1

2
ðDU2Þe; ð28Þ
to obtain
X
c

AcUcðLhUÞc ¼ �
X
e

X
c

de;cU
2
c‘eue þ

X
e

‘eje

jDXje
ðDUÞ2e ¼ �

X
c

U2
c ½DTð‘uÞ�c þ

X
e

‘eje

jDXje
ðDUÞ2e . ð29Þ
If we now define the volume integration operator, �, as
Z
U �

X
c

XDc

m¼1
DT

z �z
� 	

m
AcUc;m ð30Þ
and go through the steps of adding the corresponding radial terms to the above results, then the following
properties of the discretized flux divergence operator can be demonstrated: i.e.,
Z

LU ¼ 0;

Z
ULU ¼

X
e;m

Dzzm‘eje

ðDUÞ2e;m
jDXje

þ
X
c;m

Acrc;m

ðDzUÞ2c;m
DzZm

P 0;

ð31Þ
in which we have set the boundary fluxes to zero and made use of the non-divergence condition.

2.5. Time discretization and conservation properties

We now have the tools in place to write down a space-time discretization of the evolution equations in
terms of horizontal face-normal velocities, u, as well as prism centred temperature and salinity, T and S: i.e.,



716 G.R. Stuhne, W.R. Peltier / Journal of Computational Physics 213 (2006) 704–729
urþ1 � ur

Dt
þ~C

�1 � Lður; mh; mvÞ þ 4pẑ�½ �~Curþ1
2 � Fr

u

n o
¼ �Dprþ

1
2

jDXj ;

T rþ1 � T r

Dt
þLður; lh; lvÞT rþ1

2 � F r
T ¼ 0;

Srþ1 � Sr

Dt
þLður; lh; lvÞSrþ1

2 � F r
S ¼ 0.

ð32Þ
The superscript r specifies the time-level at which a quantity is evaluated, with vrþ
1
2 denoting the average

1
2
ðvr þ vrþ1Þ and Dt being the time-step size.
Considering the temperature evolution equation, we have

R
T rþ1 �

R
T r ¼ Dt

R
F T , which simply expresses

the discrete conservation of heat. In the temporal discretizations of u, T and S, the difference of squares gives
ð
R
T 2Þrþ1 � ð

R
T 2Þr

2Dt
¼ �

Z
T rþ1

2Lður; lh; lvÞT rþ1
2 þ
Z

T rþ1
2F r

T . ð33Þ
From Eq. (31), we know that the first term on the RHS will either vanish (for lh = lv = 0) or remain strictly
negative definite if either dissipation coefficient is positive. Hence, in the absence of any inhomogeneous forc-
ing (i.e., FT = 0), the discrete integral �T2 will be strictly conserved or dissipated, which is a known desirable
feature of centred-difference finite-volume advection/diffusion schemes (see Arakawa [28]). Naturally, the
same is true for the evolution of salinity, S, and, because of the special relationship between ~C

�1
and ~C

T

(Eq. (17)), we can demonstrate a relation similar to Eq. (33) for u. Multiplying the momentum evolution equa-
tion by ‘DT

z �zjDXjurþ
1
2 and summing over all edges, we use Eq. (15) to obtain that,
Krþ1 � Kr

Dt
¼ �

Z
Urþ1

2 �Lður; mh; mvÞUrþ1
2 þ
Z

Urþ1
2 � Fr

u þ P
rþ1

2� ; ð34Þ
in which U � ~Cu; P
rþ1

2� is a baroclinic energy conversion term (see below), and
Kr � 1

2

X
e;m

‘ejDXje DT
z �z

� 	
m

ure;m
� �2

� 1

2

Z
jUrj2; ð35Þ
where we have employed Eq. (16) to demonstrate that the scalar Kr approximates the total kinetic energy. The
Coriolis term does not influence Eq. (34) because of the identity U � ðẑ�UÞ ¼ 0. Our generalization of Perot�s
analysis makes clear how one can treat such dynamical terms, as well as boundary conditions and momentum
forcing, in a local Cartesian 3-space affixed to a prism, while maintaining the crucial energy budget in the
velocity field, which is discretized in terms of normal velocities at its horizontal edges.

The baroclinic energy conversion term, P*, is defined, and can be further manipulated, as follows:
P � � �
X
e;m

DT
z �z

� 	
m
ð‘uDpÞe;m ¼

Z
p
A
DTð‘uÞ ¼

X
c;m

ðwADzpÞc;m; ð36Þ
and if we discretize the hydrostatic balance relation as
Dzp ¼ �hqDT
z �ziz; ð37Þ
it can be shown through additional algebra that Eq. (36) is equivalent to
P � ¼ �
Z
hwizq ¼ �

Z
Z½Lðu; lh; lvÞq� F q�; ð38Þ
in which Fq is an appropriate inhomogeneous forcing on the density field. The initial RHS terms of Eqs. (34)
and (38) demonstrate the appropriate discrete kinetic-potential energy flux conservation law for the rigid-lid
Bryan–Cox–Semtner model (see Dukowicz and Smith [29]).

On the topic of the energy budget, we could, in fact, obtain an even stronger conservation principle if we
were to replace either the thermal or the saline conservation law in the discrete equations (32) with a discrete
buoyancy equation of the form
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qrþ1 � qr

Dt
þL urþ

1
2; lh; lv

� �
qrþ1

2 � F r
q ¼ 0. ð39Þ
Under these conditions, Eq. (38) substituted into Eq. (34) would enable us to define a discrete total (kinetic
plus potential) energy as:
Er ¼ Kr þ
Z

Zqr. ð40Þ
However, among other modest complications, this would entail evaluating the advecting velocity in Eq. (39) at
time level r þ 1

2
, and thus solving nonlinear equation systems to determine fields at time level r + 1 from those

at level r. Another potential improvement that could be achieved at the expense of increased storage require-
ments relates to the formal temporal accuracy of the scheme, which would become second-order if conserva-
tion were imposed at r þ 1

2
time levels (e.g., on Krþ1

2 as opposed to Kr), with a leapfrog-like time-stepping
scheme of the form
T rþ1
2 � T r�1

2

Dt
þLður; lh; lvÞ

T rþ1
2 þ T r�1

2

2

 !
� F r

T ¼ 0 ð41Þ
for determining temperature (and analogously for salinity and momentum). In this work, we restrict ourselves
to the analysis of the cheapest, first-order space-time discretization with kinetic-only energy conservation,
understanding that further refinements are possible if a demanding application requires them.

Before leaving the topic of discrete invariants, we consider the momentum conservation properties of the
discretization. Perot [16] showed that this quantity also is conserved for the Navier–Stokes equations on the
flat plane, but the result does not carry over to the sphere. Considering one radial level only (with unit depth),
a component of total momentum must be defined with respect to a coordinate basis vector, qc, that varies from
cell-to-cell: i.e.,
M ðqÞ �
X
c

Acqc �Uc ¼
X
c

Acqc � ð~CuÞc ¼
X
e

‘ejDXjeueð~C
�1 � qÞe. ð42Þ
In tandem with the discrete momentum evolution equation in (32), this gives
Mrþ1
ðqÞ �Mr

ðqÞ

Dt
¼ �

X
e

‘ejDXje ~C
�1 � q

� �
e

~C
�1 �LhU

rþ1
2 þ Dprþ

1
2

jDXj

 !
e

þ � � �

¼
X
c

Ac
~C~C

�1 � q
� �

c
�LhU

rþ1
2 þ
X
c

p
rþ1

2
c DTð‘~C�1 � qÞ
h i

c
þ � � � ð43Þ
(with source terms left out). Eq. (43) shows that the q-component of momentum will be discretely conserved
only if the following geometric conditions hold:
½Dð~C~C�1 � qÞ�e ¼ ½DTð‘~C�1 � qÞ�c ¼ 0; ð44Þ

in which the first condition is a consequence of Eq. (27) with H ~C~C

�1 � q. For q constant on the flat plane, it
is easily shown that ~C

�1 � q ¼ n̂ � q and the conditions (44) are fortuitously satisfied. This ceases to be the case
on the sphere, where the quantities vanish only to OðjDXjÞ, except perhaps for ‘‘special’’ combinations of grid
and basis vector.

In actually integrating the evolution equation (32) over a time step, we first advance the temperature and
salinity fields by solving for Tr+1 and Sr+1: i.e., for temperature
1þ Dt
2
Lður; lh; lvÞ

� �
T rþ1 ¼ 1� Dt

2
Lður; lh; lvÞ

� �
T r þ DtF r

T ; ð45Þ
and analogously for salinity. The linear equation system (45) is non-symmetric for ur 6¼ 0, and solving for Tr+1

requires a generalization of commonly employed conjugate-gradient type algorithms for sparse, symmetric
matrix inversion. We use a generalized minimum residual (GMRES) algorithm that was implemented by
CERFACS [20], and that is based on the projection of residuals onto subspaces of the Krylov space using
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an Arnoldi–Lanczos procedure. With T rþ1
2 ¼ 1

2
ðT r þ T rþ1Þ and Srþ1

2 ¼ 1
2
ðSr þ Srþ1Þ determined, we can use the

discrete hydrostatic relation (37) and the equation of state to determine the hydrostatic pressure variation,
p
rþ1

2
h . However, because of the vertical boundary conditions, the total pressure, prþ

1
2 ¼ 1

2
ðprs þ prþ1s Þ þ p

rþ1
2

h , de-
pends also on a surface pressure field, ps, which is codetermined with lateral velocity, u, at time-level r in such a
way as to enforce the vanishing bottom normal velocity condition ðwr

Dc
¼ 0Þ.

As is generally the case in both rigid-lid and free surface ocean models, the evolution equation for horizon-
tal velocity is coupled to an unknown surface field by the bottom boundary condition. In our scheme, the
resulting linear equation system that can be written schematically as follows:
ð46Þ
where
ð47Þ
and, similarly,
ð48Þ
The GMRES algorithm is used once again to iteratively solve for ur+1 and prþ1s (which closes the discrete
dynamics, apart from the determination of the mixing coefficients, mh,v and lh,v, which is discussed in the fol-
lowing subsection). Because the iterative solution procedure simultaneously determines horizontal velocity
and surface pressure, our approach differs from an implicit pressure-projection scheme for incompressible
CFD (e.g., Löhner and Yang [30]), which would first ‘‘predict’’ an intermediate (and generally divergent)
velocity field, ~u, through the momentum equation, and then determine the pressure field that ‘‘corrects’’ away
the divergent component. This does not maintain kinetic energy conservation (see the discussion of Mahesh
et al. [31]). Ocean models that decouple the barotropic and baroclinic components of the flow are based on an
analogous predictor-corrector strategy, whereas in our scheme, the ‘‘prediction’’ and ‘‘correction’’ are sub-
sumed into the rational iteration procedure. In coastal modeling, Casulli and Walters [8] and Zhang et al.
[11], following the earlier work of Casulli and Cheng [32], also simultaneously determine surface height/pres-
sure and horizontal momentum, but these authors treat the advective term explicitly, which splits the algebraic
problem into simpler SPD systems, but which once again destroys the energy conservation property. Of
course, in our scheme, the detailed validity of dynamical constraints depends upon the tolerance used in
the iterative solution procedure, which we analyze in tests described in Section 3.1 below.
2.6. Mixing parameterization

The choice of mixing scheme for representing underresolved processes is a major open issue in ocean mod-
eling, and for purposes of this study we will simply illustrate how one frequently used set of assumptions fit
into our methodology, and adopt these consistently throughout. A common rule of thumb for specifying the
horizontal mixing essentially entails utilizing as little dissipation as needed to achieve numerical stability (see
Bryan et al. [33]). To cite an example that involves variable grid resolution over the globe, we mention the
analyses of Murray and Reason [34], which highly resolve the South Indian Ocean and coarsely resolve the
rest of the world oceans. Strictly speaking, our own methodology is more-or-less unconditionally stable
against any unbounded growth in numerical ‘‘noise,’’ but simulations become unphysical if we run too far out-
side the parameter regime prescribed by stability criteria for explicit methods. For the 1-D advection-diffusion
problem, it can be shown that if the dissipation is less than 1

2
U‘ (with U the advection velocity and ‘ the grid

spacing), the discrete solution can manifest an algebraic instability (e.g., Clancy [35]). In practice, acceptable
solutions can be achieved using a horizontal dissipation coefficient as small as U*‘, where the ‘‘grid velocity’’
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constant U* is on the order of 1% of the maximum advecting velocity. Because the momentum equation has
more complex dynamics than the thermal and saline advection-diffusion equations, additional instabilities
may also arise, and in particular we must ensure that Munk diffusive boundary layers will be thick enough
to be resolved by the grid (see Bryan et al. [33]). The required values of mh and lh are as follows:
mh ¼ min U �‘; 4p cos hð
ffiffiffi
3
p

‘

p
Þ3

( )
; lh ¼ U �‘; ð49Þ
in which h is the latitude. We do not need to worry about the upper bounds on the dissipation coefficients
because of the implicit time discretization.

For vertical dissipation, we utilize the parameterization of Pacanowski and Philander [36], which is given by
mv ¼
m0

ð1þ 5RiÞ2
þ mb; lv ¼

mv
ð1þ 5RiÞ þ lb; ð50Þ
where m0, mb, and lb are constants and the Richardson number at triangular prism faces is computed as
Ri ¼ max
DzZDzq

jDzU�j2 þ �
; 0

( )
ð51Þ
(� in the denominator being a small number introduced to avoid divisions by zero). With our implicit temporal
discretization and large m0, Eq. (50) effectively includes a convective parameterization, as convectively unstable
gradients with Dzq < 0 will be strongly dissipated.
3. Numerical tests

3.1. Kinetic energy conserving dynamics

The first tests that will be described are designed to verify the conservation properties of the momentum
discretization, and establish the dependence of numerical errors and iteration counts on the GMRES tolerance
parameter, �tol. If a trivial equation of state with qT = qS ” 0 is prescribed, then there is no coupling between
the momentum, temperature and/or salinity dynamics and the baroclinic energy conversion term P*, in Eq.
(34) becomes irrelevant. If, moreover, there is no dissipation (i.e., mh = mv = 0), no forcing, and no boundary
momentum flux, then the remaining terms also vanish and an exact solution of the discrete momentum equa-
tion should yield Kr = K0 for arbitrary time level r. On the basis of this we can define a measure of relative
error in total kinetic energy as
�K �
jKr � K0j

K0
. ð52Þ
Another measure of error can be related to the bottom normal velocity predicted by integrating the divergence
down through the pressure column, which should be identically 0. The quantity
�w �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

cðDc þ 1Þw2
DcP

c;mw
2
c;m

s
ð53Þ
is hence a measure of the errors in the surface pressure and horizontal divergence though the water columns at
all triangles in the ocean domain. In order to prevent such errors from impacting upon the global conservation
properties of the advection-diffusion operator L;wDc

¼ 0 is still summarily imposed at the ocean bottom,
which cancels all local ‘‘gains’’ and ‘‘losses’’ over a column in the lowermost cell.

The model has been run under the above discussed energy conserving conditions, using seven variable-
thickness vertical levels (spanning zm = 0, 25, 50, 100, 200, 400, 800, and 1600 m) and a simple horizontal grid
with relatively coarse resolution (about 2�). In this configuration we integrated five cases in which �tol was set
to the respective values 10�3, 10�4, 10�5, 10�6, and 10�7 for 1000 steps totaling 10 nondimensional units of
simulation time per case (this being 10 days of physical time at a time step of about 15 min). An identical
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initial condition was applied in each case, with the u0 and p0s fields having been created over an earlier 30 day
forced and dissipative simulation. In this setup, the ocean domain was spun up from rest by a surface wind
stress that was applied as an intense retrograde equatorial jet. This resulted in a flow pattern that had features
in common with the oceanic circulation, but that was contrived to be unrealistically intense in order to facil-
itate short test simulations that could exhibit nonlinear dynamics at large scales.

Although the initial field, u0, is qualitatively ‘‘physical,’’ simulations with no dissipation invariably develop
into unphysical states, so we will not discuss the dynamics directly. The reader�s attention is directed instead to
Fig. 5, which shows the number of iterations per step used over the 10 days of the five respective cases. This
gives an idea of how the computational cost increases as �tol decreases, and it can be inferred from the loga-
rithmic plot that the iteration counts scale approximately with 1=

ffiffiffiffiffiffi
�tol
p

. Obviously, the cost of using extremely
small tolerances becomes prohibitive, but it will be shown in what follows that one need not, for practical pur-
poses, go below about 10�4, except to demonstrate the properties of the numerical scheme. All of the cases
except the one with the loosest GMRES tolerance (�tol = 10�3) have, by about t = 5, fallen into quasi-steady
regimes in which their iteration counts per step fluctuate about stable levels. Examination of the corresponding
fields verifies that they are characterized by unphysical grid-scale artefacts, but, in contrast with other numer-
ical schemes, this ‘‘noise’’ does not trigger the unbounded growth of velocity components, and their dynamics
are reproduced consistently at different �tol values. The sole exception, the case with �tol = 10�3, begins to de-
velop anomalous large-scale currents at high latitudes, which suggests the onset of a runaway instability.

Fig. 6 shows semi-logarithmic plots of the kinetic energy conservation and bottom velocity errors, �K and
�w, over the 10 days of our 5 cases. As would be expected, these errors are attenuated as �tol decreases, with the
dependence appearing to be approximately linear in both cases. There are some fluctuations in the �K curve,
but the results nevertheless show how the energy error, as well as the bottom velocity error, are being reduced
essentially to the level of numerical roundoff when �tol is set very small. Fig. 6 also shows further evidence that
the �tol = 10�3 case produces unacceptable results. By the end of the 10 days, there is an almost 100% discrep-
ancy in kinetic energy, while the bottom velocity error appears to exhibit continuing systematic growth. In
contrast, all of the other error curves are approaching saturation, with the next largest kinetic energy error,
corresponding to the �tol = 10�4 case, being only about 2%. Further, lengthier simulations that included
dissipation, forcing, and baroclinicity have established that this tolerance level in the momentum solution is
sufficient to achieve robust and stable dynamics under a wide variety of grid resolutions, flow patterns and
flow intensities. The GMRES tolerance for solving the implicit heat and salinity transport equations must
be set at a lower level – about 10�6 – in order to avoid occasional numerical problems in baroclinic simula-
tions. However, the iterative matrix inversions for the scalar equations also converge much more rapidly, and
in all only a handful of solver iterations per step are required to perform reasonable integrations. As is evident
Fig. 5. Solver iteration counts per step for 1000 steps of 5 kinetic-energy conserving integrations with different solver tolerances.



Fig. 6. Errors in kinetic energy (�K = jKr�K0j/K0) and bottom velocity (�w) vs. time step for 5 integrations with different solver tolerances.
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from Figs. 5 and 6, transients arising from sudden changes in simulation conditions place a temporary load on
the solver.

3.2. Density front adjustment

The next tests that will be discussed relate to the geostrophic adjustment of an initial state and to the break-
down of the ensuing flow pattern through the development of baroclinic instability. Such phenomena are of
crucial importance in atmosphere/ocean dynamics, although in the ocean their spatial extent is usually pre-
scribed by the thermocline and the Rossby radius of deformation, which are quite small in relation to the
respective vertical and horizontal extents of the flow domain. One of the potential advantages of our numer-
ical methodology is in its capacity to selectively refine the global grid in regions where ‘‘eddy permitting’’
dynamics are known to be required. However, realistic simulations of the thermocline circulation, which is
continuously forced by surface heat, buoyancy, and momentum fluxes, are very complex dynamically, and
hence not a good context in which to discern how well the numerical methodology is resolving basic fluid
dynamical processes.

In order to perform a quantitatively interpretable experiment that exhibits the dynamics of geostrophic
adjustment and baroclinic instability, we considered the problem of density front adjustment on a global scale,
in the geometry of the real oceans. This unforced, dissipative process has previously been studied through
experiments and numerical simulations in simple rotating geometries (see, e.g., Hallworth et al. [37] and Steg-
ner et al. [38]) in which a confined bolus of dense fluid is suddenly released and allowed to slump into a res-
ervoir of lighter fluid. Such dynamics are of direct relevance to the atmosphere and oceans, but not on the
global scale. However, if one imagines a vast idealization of the atmosphere-ocean system in which an isolated
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‘‘parcel’’ of solar energy has somehow heated up an equatorial band, then the global flow of thermal energy
can be abstracted in terms of cold, dense fluid slumping back from the poles to the equator. Quite interest-
ingly, we will see that, even without any thermal or wind-stress forcing, some of the gross features of the ocean
circulation are reasonably represented in the temporary flow pattern that emerges during geostrophic adjust-
ment and subsequent baroclinic instability. What is significant from our perspective, is the fact of this being an
initial value problem with a well-defined energy budget in which there are no sources or sinks apart from
dissipation.

The elements of the simulation that are specified a priori are the equation of state, for which we assume a sim-
ple linear form with constant thermal and vanishing saline expansion coefficient (i.e., q/q0 = 1�2.5�4� C�1T),
and the initial temperature field, for which we assume the profile
T 0 ¼
5 �C if jkj P 40�;

5 �Cþ 25 �C
2

1þ cos jkj�20�
20�

� �h i
if jkj < 40� and jkj > 20�;

30 �C if jkj 6 20�;

8><
>: ; ð54Þ
which is independent of depth and bathymetry, depending solely on the latitude, k. Because there is no ther-
mocline in this toy model, we simply discretize the upper 5 km of the ocean with 10 layers of equal thickness.
The values used for the dissipation parameters are U* = 6 cm/s, mb = 1 cm2/s, m0 = 49 cm2/s, and lb = 0.1 cm2/
s. For these particular values, the system reaches a new quiescent state with stable density distribution after
approximately 2 years. Over this period, the velocity–temperature dynamics progress through a sequence of
stages that are well understood, and whose signatures can be seen in the time series in Fig. 7, which illustrates
the evolution of kinetic, potential, and total energy deviations, as diagnosed from the model fields (and scaled
by a nominal potential energy). A logarithmic time scale is used because there are three successive stages
whose respective temporal extents differ by an order of magnitude.

The initial thermal/density front is not in geostrophic balance with the zero velocity field, so the first stage
of evolution, which takes place over 2–3 days, is the adjustment to balance. There is a distinctive sequence of
pulses in which potential and kinetic energy are inter-converted at about 1 day intervals. This is consistent, at
mid-latitudes, with the ‘‘half pendulum day’’ (i.e., p/jX0sinhj), which is the characteristic period of inertial
oscillation. ‘‘Noise’’ with this period is a common artefact in numerical simulations of baroclinic phenomena,
signaling a departure from geostrophic balance in the numerical solution (see, e.g., Polavarapu and Peltier [39]
and Yamazaki and Peltier [40]). However, some applications demand the resolution of bona fide inertial-type
oscillations, and experimental and numerical studies of collapsing density fronts on the rotating f-plane have,
in particular, shown the initial front exhibiting a number of intense pulsations at the inertial oscillation
frequency before adjusting to cyclo-geostrophic balance (see [37,38]). The time series of Fig. 7 show clear evi-
dence that strong inertial oscillations are in play during the first few days of simulation time, when they are
expected to occur on physical grounds, but no evidence of significant anomalous oscillations in the later
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Fig. 7. Evolution of potential, kinetic, and total energies over 1000 days of the collapsing density front simulation.



Fig. 8. Temperature field slice and near-surface velocity vector field in the Pacific basin after 100 days of the collapsing density front
simulation.
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dynamics. This suggests that the representation of geostrophic balance by the numerical structure is physically
reasonable. The energetics are also appropriate, with the total (kinetic plus potential) energy being very well
conserved in the initial stage of the dynamics, and then monotonically depleted in the later, dissipative stages.

By design, the geostrophic currents that arise from the adjustment of our particular density front are baro-
clinically unstable, which triggers a secondary, irreversible conversion of potential energy to kinetic energy
that is lost to viscous dissipation. The second stage of evolution reflected in our time series corresponds to
the initial growth of small-scale baroclinic disturbances, which progresses over about 20 days and then satu-
rates. The third stage, which takes up the balance of the multi-year simulation, is marked by the gradual decay
of the kinetic energy due to dissipation. The overall mechanism that is in play is illustrated in Fig. 8, which
shows the near-surface velocity vector field in the Pacific basin at 100 days, along with a slice through the tem-
perature field through the 0–180� longitude line (the radial scale in the diagram is exaggerated for clarity). By
this point, the potential energy in the initial state has mostly been liberated, which is evident in the fact that
cold and warm waters have been extensively redistributed near the bottom and surface, respectively, creating a
global stably stratified configuration. The kinetic energy is manifested in the form of a relatively stable
equatorial easterly jet and a complementary pair of intense, unstable streams that are deflected into the two
hemispheres by western boundaries and/or topography. These deflected currents are breaking down into cy-
clones and anti-cyclones at smaller scales that are more susceptible to dissipation. The basic pattern is repeated
in the other ocean basins (not shown) and is broadly suggestive of the real ocean circulation, although the
‘‘boundary currents’’ in this simple experiment are highly distorted and are extremely exaggerated in extent.

Before leaving this subsection, we briefly examine the dynamics of a small portion of the swirling current in
the north Pacific basin. Fig. 9 shows the temperature field and the direction of the horizontal current at the
m = 2 level at the following four times: 100 days (frame a); 104.5 days (frame b); 106.5 days (frame c); and
108.5 days (frame d). Over this period we see the thermal front shedding both a warm core ring and a cold



Fig. 9. Close up showing the contoured temperature field and velocity direction at Z-level m = 2 in a region of the baroclinically unstable
front at 4 times: t = 100 days (a), 104.5 days (b), 106.5 days (c), and 108.5 days (d).
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core ring consistently with the well-known phenomenology of baroclinic instability in geostrophic ocean
currents (see, e.g., Bush et al. [41,42]). The correlation between the current direction and the thermal gradient
is characteristic of a geostrophically balanced flow, which is the norm in most regions of the ocean, the excep-
tions being coastal and equatorial regions, where ageostrophic dynamics can be significant.

3.3. Realistic ocean simulations

The final set of results that we will employ herein for demonstration purposes relate to the ocean circulation
forced by realistic climatological data describing the temperature and salinity distributions (Levitus [43]) and
the surface wind stress (Hellerman and Rosenstein [44]). This is a very common scenario and can be regarded
as a proxy for coupling the ocean model to appropriate models of the other components of the climate system
(i.e., atmosphere, land surface, and sea ice). Unfortunately, the external coupling interacts with the basic fluid
dynamics in complex ways, which precludes the introduction of simple measures of discretization error such as
the energy balances discussed in the previous subsections. However, we may still perform multi-resolution
analyses in which the same case is integrated using different grids with differing resolutions.

As a take-off point for this test, we cite the previous numerical analyses of Semtner and Chervin [45,46],
who performed eddy-resolving simulations of the ocean circulation with Cartesian grids having 1

2

�
horizontal



G.R. Stuhne, W.R. Peltier / Journal of Computational Physics 213 (2006) 704–729 725
resolution. We used the same 20 vertical levels as employed in these previous studies, which resolved the near-
surface region with 25 m grid spacing and gradually coarsened the resolution to 400 m in the deepest part of
the ocean, truncating at 5200 m depth. Also, as in Semtner and Chervin [45,46], we began with the ocean at
rest, and then relaxed the initially trivial temperature and salinity distributions towards the annually averaged
climatology while using the corresponding wind stress data as a surface boundary condition. However, these
authors adjusted the time-scale of the dynamics in an artificial, depth-dependent manner in order to accelerate
the spin-up, and also performed a succession of other initialization steps that included several modifications of
Fig. 10. Velocity vector magnitudes at Z-level m = 2 and time t = 5 years from three equivalent climatologically forced ocean simulations
with different meshes. The top frame also shows the direction of the velocity vector interpolated onto a uniform 5� · 5� grid.
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the relaxation scheme and a switch between $2 and $4 dissipation. Their objective was to bring their simula-
tions into a state from which eddies could be marginally resolved at realistic scales in the ocean circulation. In
the test for which results are to be provided herein we will not attempt to resolve the mesoscale eddies, but
simply to capture the spin-up of the large-scale ocean circulation under a representative relaxation scheme.
We therefore invoke no special approximations while relaxing temperature and salinity continuously to their
climatological distributions at a time-scale of 1 month at the ocean surface and 1 year in the interior.

In the present test, the heat and salt equations are nonlinearly coupled to the momentum dynamics using the
full UNESCO equation of state for seawater (see Gill [47], Appendix III). Because T and S are being directly
relaxed to a given climatology on a relatively short time scale, it is not particularly informative to examine them
in detail. The same is not true, however, of the velocity field, which equilibrates with the simulation conditions
in a non-trivial way over a number of years. In Fig. 10, we show contour plots of the velocity vector magnitude
(interpolated to the nodes of the triangular mesh) at Z-level m = 2 after 5 years of integration for three cases
with different grid structures and resolutions. The plots are in cylindrical projection, and the topmost case also
illustrates the velocity directions interpolated onto a uniform 5� · 5� latitude-longitude grid. The results in the
top frame are from a case using a uniform grid with about 2� equatorial resolution (the triangle edges near the
poles are actually the same size as at the equator, but appear distorted because of the convergence of meridians).
In the middle frame, the resolution is uniformly doubled to about 1� equatorial equivalent, while in the bottom
frame the resolution around the Atlantic basin region is locally quadrupled from the 2� grid to about 1

2

�
equa-

torial equivalent. All of the velocity fields consistently exhibit the essential circulation pattern of the world
ocean, as can be seen in comparison with, for example, Semtner and Chervin [46]. Intense equatorial jets
and western boundary currents occur at the correct locations in all of the ocean basins.

Comparing the detailed features of the three cases of Fig. 10, we see the expected result that regions with
increased resolution exhibit finer structure in the oceanic jets, along with a corresponding intensification of
western boundary currents. At equatorial equivalent 1

2

�
resolution, the most intense boundary currents are

on the order of 1 m/s, which is physically appropriate. Typical oceanic gyre currents, whose amplitude is con-
sistently resolved in all the simulations, are on the order of a few centimeters per second. Except around the
Atlantic basin, the results in the top and bottom frames are essentially identical, which is to be expected since
the resolution of the two simulations is identical over most of the ocean domain. Overall, the results are con-
sistent and as expected. Moreover, these 5 model year simulations show no signs of numerical instability, and
further test calculations have been continued for significantly longer periods without problems.

4. Conclusions

The set objective has been achieved: we described a general unstructured grid numerical methodology for
hydrostatic dynamics on the sphere, and demonstrated its desirable numerical properties for a number of real-
istic and artificial simulations with realistic global ocean basin geometry. The methodology has been described
and tested with a view to applications in global ocean modeling, and the advantages that it offers are partic-
ularly useful in this context. However, the techniques themselves are sufficiently generic to make them relevant
also to coastal ocean modeling, atmospheric modeling, and other geophysical applications. Indeed, the present
work essentially lays out the basic common elements for a larger unstructured grid climate system model, the
development of which is a longer term objective.

With regards to the performance of the new numerical methodology, it has been shown that simulations
with fine resolution can be carried out over useful intervals of simulation time. Various aspects of our discret-
ization can incur performance costs, which must be balanced against the benefits, such as the capability to
selectively resolve limited regions and the favorable conservation properties. These costs can, however, be
systematically controlled in line with the requirements of a particular analysis. We showed how the degree
of energy conservation is controlled by the tolerance in the iteration procedure. Another point to consider
is that, because of the way in which memory is organized in high-performance vector processors, an unstruc-
tured grid model that uniformly resolves the entire sphere will have an inherent performance handicap in com-
parison with an equivalent Cartesian gridded model at the same resolution. However, this cost also can be
circumvented if an application does not require the versatility of a full unstructured grid, for our techniques
apply just as well to spherical triangular grids that are describable by simpler ‘‘block structured’’ memory
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layouts. An icosahedral grid that has gone through l uniform quadtree refinements can, for example, be laid
out as 10 2l · 2l logical square grids, with connectivity information having to be maintained only at the bound-
aries between these structured blocks (e.g., Stuhne and Peltier [26]). Within each block, there would be no need
for indirectly addressed vector operations, which carry a performance penalty. Finally, some of the novel as-
pects of our space-time discretization might even be adapted to existing curvilinear Cartesian grids, with the
aim of improving conservation properties.

Given the large number of dependencies upon specialized areas of research, it would be impossible at the
outset to develop and present a complete model that would be competitive in every way with state-of-the-art
existing models. The key novelties at the present stage of the work are in the spherical hydrostatic unstruc-
tured grid techniques – specifically, in the application of robust, stable, energy-conserving time-stepping
schemes on layered spherical triangular tessellations. The advantages and present limitations of these numer-
ical methods have been analyzed in the context of a prototype model whose various components can be
improved with the assimilation of advances in specialized areas. We have mentioned already the desirability
of developing mesh generation techniques that optimize accuracy while better representing coastlines, as well
as the availability of alternative mixing and eddy parameterization schemes for unresolved dynamics. Another
area for possible future research relates to the linear inversion scheme for advancing model time, which could
potentially be accelerated with better preconditioning schemes for the GMRES solver, or with the use of a
multigrid version of this algorithm. In relation to the model physics, the discretization can be extended to
non-hydrostatic Boussinesq and anelastic dynamics. This would open the door to a range of more exotic appli-
cations, such as simulations of astrophysical processes and of convection in the Earth�s mantle.

Our highest priority for future research is to incorporate elements that are required for the most demanding
oceanic applications. One clear requirement is the incorporation of a dynamic free surface as an alternative to
the rigid-lid approximation. In and of itself, this would be relatively straightforward and would carry very lit-
tle additional computational expense in our model, as we already employ implicit time-stepping (which is
more-or-less required in practice because of the very high phase speed of the gravity wave mode associated
with the oscillation of the free surface). However, in order to fully exploit the geometric versatility offered
by unstructured grid methods, a better approach would at the same time combine the discretization of the
spherical shell with a transformation of the radial coordinate (e.g., Wedi and Smolarkiewicz [48]). In tandem
with the above-discussed optimization of the horizontal meshing scheme, this would provide, overall, for a
superior representation of the ocean domain geometry. When such a capability is in place, it will be possible
to achieve new insights into the dynamics of small-scale and geometry-dependent hydrodynamic phenomena
in the context of the global ocean circulation – for instance, in order to investigate tidal dynamics and the
detailed role of eddies in coastal boundary currents.
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